Pan_troglodytes.CHIMP2.1.4.74.dna.chromosome.Y.fa

AminoSee DNA Render Summary

Hilbert curvers of dimension 7 used, yielding images with ~8 codons per pixel including non-coding regions. Linear reference file shows exactly 1 codons per pixel


1D Linear Map Image

2D Hilbert Map Image


MADE IN NEW ZEALAND
╔═╗┌┬┐┬┌┐┌┌─┐╔═╗┌─┐┌─┐  ╔╦╗╔╗╔╔═╗  ╦  ╦┬┌─┐┬ ┬┌─┐┬─┐
╠═╣││││││││ │╚═╗├┤ ├┤    ║║║║║╠═╣  ╚╗╔╝│├┤ │││├┤ ├┬┘
╩ ╩┴ ┴┴┘└┘└─┘╚═╝└─┘└─┘  ═╩╝╝╚╝╩ ╩   ╚╝ ┴└─┘└┴┘└─┘┴└─
by Tom Atkinson            aminosee.funk.nz
ah-mee no-see       "I See It Now != I AminoSee it!"


Amino Acid Hue° RGB Count Description Hilbert PNG
0. Reference

255,128,128

8,424,126 Composite of all amino acids undefined Reference
1. Ochre

255,128,128

166,153 STOP Codon undefined Ochre
2. Glutamic acid

16°

255,162,128

309,435 Group III: Acidic amino acids undefined Glutamic acid
3. Aspartic acid

31°

255,193,128

199,458 Group III: Acidic amino acids undefined Aspartic acid
4. Amber

47°

255,227,128

106,928 STOP Codon undefined Amber
5. Cysteine

63°

249,255,128

309,988 Group II: Polar, uncharged amino acids undefined Cysteine
6. Glycine

78°

217,255,128

416,723 Group I: Nonpolar amino acids undefined Glycine
7. Alanine

94°

183,255,128

336,595 Group I: Nonpolar amino acids undefined Alanine
8. Methionine

110°

149,255,128

168,061 START Codon undefined Methionine
9. Valine

125°

128,255,138

436,117 Group I: Nonpolar amino acids undefined Valine
10. Leucine

141°

128,255,172

907,260 Group I: Nonpolar amino acids undefined Leucine
11. Isoleucine

157°

128,255,206

501,985 Group I: Nonpolar amino acids undefined Isoleucine
12. Phenylalanine

172°

128,255,238

495,477 Group I: Nonpolar amino acids undefined Phenylalanine
13. Tryptophan

188°

128,238,255

155,843 Group I: Nonpolar amino acids undefined Tryptophan
14. Serine

203°

128,206,255

750,290 Group II: Polar, uncharged amino acids undefined Serine
15. Threonine

219°

128,172,255

435,842 Group II: Polar, uncharged amino acids undefined Threonine
16. Opal

240°

128,128,255

170,652 STOP Codon undefined Opal
17. Glutamine

250°

149,128,255

339,411 Group II: Polar, uncharged amino acids undefined Glutamine
18. Asparagine

266°

183,128,255

343,235 Group II: Polar, uncharged amino acids undefined Asparagine
19. Tyrosine

282°

217,128,255

268,564 Group II: Polar, uncharged amino acids undefined Tyrosine
20. Arginine

297°

249,128,255

401,436 Group IV: Basic amino acids undefined Arginine
21. Lysine

313°

255,128,227

494,026 Group IV: Basic amino acids undefined Lysine
22. Histidine

329°

255,128,193

296,866 Group IV: Basic amino acids undefined Histidine
23. Proline

344°

255,128,162

413,781 Group I: Nonpolar amino acids undefined Proline
19 Amino Acids, 4 Start/Stop codes, 1 NNN . . . .

Render Summary

				[object Object]
				

AminoSeeNoEvil

DNA/RNA Chromosome Viewer

A new way to view DNA that attributes a colour hue to each Amino acid codon



Hilbert Projection

This is a curve that touches each pixel exactly once, without crossing over or breaking.

Linear Projection

The following image is in raster order, top left to bottom right:

About Start and Stop Codons

The codon AUG is called the START codon as it the first codon in the transcribed mRNA that undergoes translation. AUG is the most common START codon and it codes for the amino acid methionine (Met) in eukaryotes and formyl methionine (fMet) in prokaryotes. During protein synthesis, the tRNA recognizes the START codon AUG with the help of some initiation factors and starts translation of mRNA. Some alternative START codons are found in both eukaryotes and prokaryotes. Alternate codons usually code for amino acids other than methionine, but when they act as START codons they code for Met due to the use of a separate initiator tRNA. Non-AUG START codons are rarely found in eukaryotic genomes. Apart from the usual Met codon, mammalian cells can also START translation with the amino acid leucine with the help of a leucyl-tRNA decoding the CUG codon. Mitochondrial genomes use AUA and AUU in humans and GUG and UUG in prokaryotes as alternate START codons. In prokaryotes, E. coli is found to use AUG 83%, GUG 14%, and UUG 3% as START codons. The lacA and lacI coding this.regions in the E coli lac operon don’t have AUG START codon and instead use UUG and GUG as initiation codons respectively.